cis: trans = 35:65

A Short Synthesis of C-2 Symmetric (2S, 5S) Pyrrolidine-2,5 Dicarboxylic Acid, a Constituent of Red Alga Schizymenia dubyi

Nicole Langlois and Anne Rojas

Institut de Chimie des Substances Naturelles, CNRS, F-91198 Gif-sur-Yvette

(Received in Belgium 11 September 1992)

ABSTRACT: (2S, 5S) pyrrolidine-2,5-dicarboxylic acid 1 was synthesized from (5S) N-methoxycarbonyl-5-ethoxyethoxy-methyl pyrrolidin-2-one 2 by a simple and efficient way ¹

The trans diacid 1 is a natural marine product isolated from the red alga Schizymenia dubyi. 2 It could be also used as an intermediate in the preparation of C-2 symmetric chiral auxiliaries in asymmetric synthesis. 3 The first synthesis of this amino diacid was developed from a t-butylpyroglutamate carbamate. 4 This synthesis involved a two carbon unit addition ($CH_2 = CHMgBr$) to the pyrrolidine carbonyl with opening of the ring, followed by cyclization and elimination of one of these two carbons. 5

Taking advantage of our previous work in this field,⁶ we planned to prepare the *trans* diacid 1 from readily available (5S) N-methoxycarbonyl-5-ethoxyethoxymethyl pyrrolidin-2-one 2^{6b,7} as outlined in scheme 1.

Reagents: a): DIBAL-H (98%); b): TsOH, MeOH (98%); c): Me₃SiCN, SnCl₄ (89%); d): Jones reagent (78%); e): HCl 6N, 100°, 24h, propylene oxide, EtOH (87%).

Scheme 1

Partial regioselective reduction of compound 2 with DIBAL-H in toluene at -78°C afforded the α -hydroxy carbamates 3 (80%)^{6b}. The yield was significantly improved by the addition of hexane solution of hydride to a THF solution of 2 and this procedure led nearly quantitatively to 3. The difference could be explained by the decreased reactivity of the alkylaluminium hydride complexed by THF ⁸. Acidic hydrolysis of 3 in methanol gave the two diastereomeric α -methoxy carbamates 4 (98%) and these precursors of the reactive N-methoxycarbonyl iminium ion were submitted to nucleophilic addition of cyanide. Reaction of the derivatives 4 with trimethylsilylcyanide and a catalytic amount of Lewis acid (SnCl₄, 0.3 equiv.) led to α -cyano carbamates 5 (89% yield). The two cyano diastereomers 5a and 5b were isolated in the ratio 35:65. Their relative configurations were ascertained by chemical correlation following scheme 2.

HO N CO₂Bn

$$CO_2$$
Bn

 CO_2 CH

 CO_2 CH

Reagents: a): MeOCOCI (80%), b): DIBAL-H (90%); c): TsOH, MeOH (99%); d): Me₃SiCN, SnCl₄ (86%); e): HCl 6N, 24h, propylene oxide, EtOH, (86%); f): H₂ - Pd/C, BH₃-Me₂S (75%).

Scheme 2

The carbamate 7 was prepared from (S) benzylpyroglutamate 9 in a mixture Et₂O-DMF-Et₃N 10 to avoid racemization 11 , and reduced with DIBAL-H in hexane to the derivative 8 (90%). The α -methoxy carbamates 8 were treated with trimethylsilylcyanide in the same conditions as 4, affording the 2,5 cis diastereomer 10a as major cyanation product 12 (86%, 10a: 10b = 7: 3). Hydrogenolysis conditions were used to remove the benzyl group of 10a and the carboxy group of the acid 11 was reduced with a solution of BH₃-Me₂S in THF, to give the primary alcohol 5a in 75% yield from 10a.

This reversed diastereoselectivity of the nucleophilic addition of cyanide, starting from 4 and 9, could be explained by an interaction of the hydroxymethyl group oxygen of 4 with the N-methoxycarbonyl iminium carbon of an intermediate such as 12, thus favouring a nucleophilic attack of cyanide on the opposite face ¹³ (scheme 3).

Scheme 3

The *trans* (2S, 5S) N-methoxycarbonyl-2-cyano-5-hydroxymethyl pyrrolidine 5b was oxidized to the cyano acid 6 by Jones reagent (78% yield). Hydrolysis of the cyano group and deprotection of the nitrogen in compound 6 were performed in the same non racemizing step ¹⁴. Heating in 6N aqueous hydrochloric acid gave the *trans* diacid 1 hydrochloride which was treated with propylene oxide as acid scavenger ¹⁵ to obtain 1 (87%). In the same experimental conditions, the cyano benzyl ester 10b was directly converted to 1, but the overall yield of the synthetic route described in scheme 1 was significantly higher (32% from (S) pyroglutamic acid).

Thus, this work constitutes a simple and efficient way to prepare this C-2 symmetric 2,5-disubstituted pyrrolidine diacid which is a precursor of optically pure *trans* 2,5 dialkoxymethyl pyrrolidines, useful as chiral auxiliaries in several enantioselective reactions³.

EXPERIMENTAL SECTION

Melting points was taken on a Kofler apparatus and was corrected. Optical rotations were measured on a Perkin-Elmer 241 (CHCl₃, solution g/100 ml). IR spectra were recorded on a Nicolet 205 (FT)(ν cm⁻¹, CHCl₃). NMR spectra were obtained (CDCl₃, Me₄Si, δ = 0 ppm) from Bruker AC200 or AC250, coupling constants J are given in Hertz (s, d, t, dd and m indicate singlet, doublet, triplet, doublet of doublets and multiplet respectively). Mass spectra were measured on an AEI MS50. Flash chromatography was performed on silica gel (SDS 230-400 mesh) and preparative thin layer chromatography on silica gel (Merck HF 254 + 366).

(S) N-methoxycarbonyl-5-ethoxyethoxymethylpyrrolidin-2-one (2)

Potassium iodide (6.26 g, 37.7 mmol) was added under argon to a suspension of NaH (50% in oil, 1.68 g, 35.0 mmol) in dry THF (28 ml). To this mixture, at 0°C was added a solution of (S) 5-ethoxyethoxymethylpyrrolidin-2-one (5.61 g, 30.0 mmol) in THF (28 ml). After being stirred 1.5 h at room temperature, the mixture was cooled again to 0°C and a solution of methylchloroformiate (3.92 g, 41.5 mmol) in THF (28 ml) was added dropwise. The mixture was stirred for 20 min. at room temperature before treating with a saturated aqueous solution of Na₂S₂O₃ (5% W/V). After usual work up, compound 2 (oil) was purified by flash chromatography (Et₂O): 6.98 g (95%). Anal. Calcd for $C_{11}H_{19}NO_5$: C, 53.86; H, 7.81; N, 5.71. Found: C, 53.77; H, 7.62; N, 5.64.

IR: 2980, 1790, 1754, 1720, 1440, 1306. 1 H NMR (200 MHz): 4.68 (m, 1H; OCHO), 4.34 (m, 1H, C-5-H), 3.87 (s, 3H, $CO_{2}CH_{3}$), 3.80-3.36 (m, 4H, $2OCH_{2}$), 2.78 (m, 1H), 2.42 (m, 1H) and 2.14 (m, 2H): $C-3-H_{2}$ and $C-4-H_{2}$, 1.27 and 1.18 (2m, 6H, $CHCH_{3}$ and $CH_{2}CH_{3}$). FAB MS: 268 (M + 23), 246 (M + H), 200, 174, 156.

(5S) N-methoxycarbonyl-2-hydroxy-5-ethoxyethoxymethylpyrrolidines (3)

To a stirred solution of the pyrrolidone 2 (1.04 g, 4.24 mmol) in dry THF (10 ml) at -78°C was added a solution of DiBAL-H in hexane (1M, 5.1 ml). After 15 min, the reaction was quenched by successive additions of a saturated aqueous solution of NH₄Cl (15 ml) and an aqueous solution of Na₂CO₃ (10% W/V, 10 ml). The mixture was extracted with CH₂Cl₂. After usual work up the crude product was eluted on silica gel (Et₂O) to afford 3 (1.03 g, 98%).

IR: 3425, 2925, 1690. ¹H NMR (250 MHz): 5.47 (m, 1H, C-2-H), 4.72 (m, 1H, OCHO), 4.11 and 3.94 (2m, C-5-H), 3.72 (s, CO_2CH_3), 3.62 and 3.47 (2m, $2CH_2O$), 1.98 (m, C-3-H₂ and C-4-H₂), 1.30 (bd, $CHCH_3$), 1.20 (t, CH_2CH_3). MS (m/z): 230 (M - 17)⁺· (100%), 184, 158, 144, 73.

(5S) N-methoxycarbonyl-2-methoxy-5-hydroxymethylpyrrolidines (4)

A solution of p-toluenesulfonic acid in methanol (0.10 g, 100 ml, 60 ml) was added to the compounds 3 (1.93 g, 7.81 mmol) under argon at room temperature and the mixture was stirred for 10 min. before the addition of an aqueous solution of Na_2CO_3 (10%, 6 ml). The mixture was extracted with CH_2Cl_2 (3 x 150 ml) and the organic layers were washed with brine, dried with anhydrous $MgSO_4$ and concentrated to give 4 (1.44 g, 97.5%). Anal. Calcd for $C_8H_{15}NO_4$: C, 50.78; H, 7.99; N, 7.40. Found: C, 50.70; H, 7.65; N, 7.34. The two diastereomers (4a:4b~85:15) could be separated by chromatography on silica gel (heptane-ether-methanol 1:5:0.1).

Major (less polar) diastereomer 4a.

Oil, $[\alpha]_D$ = -49° (c = 1.06). IR : 3422, 2964, 1690. ¹H NMR (250 MHz) : 5.19 (m (sh.), C-2-H), 4.05 (m, 1H, C-5-H), 3.95 (ex. with D₂O, OH), 3.76 (s + m, 4H, CO₂CH₃ and C-6-Ha), 3.60 (dd, 1H, C-6-Hb), 3.34 (s, 3H, OCH₃), 2.03, 1.93 and 1.80 (3m, 4H, C-3-H₂ and C-4-H₂). MS (m/z) : 189 (M⁺·), 158 (100%), 126, 98, 82, 68.

Minor (more polar) diastereomer 4b

Oil, $[\alpha]_D$ = -31° (c = 0.86). IR : 3410, 2957, 1690. ¹H NMR (250 MHz) : 5.02 (bd, $J \sim 3$, C-2-H), 4.09 (m, C-5-H), 3.76 (s, 3H, CO₂CH₃), 3.65 (m, 2H, C-6-H₂), 3.32 (s, 3H, OCH₃), 2.25 (m, 1H), 1.87 (m, 2H) and 1.70 (m, 1H) : C-3-H₂ and C-4-H₂.

(5S) N-methoxycarbonyl-2-cyano-5-hydroxymethylpyrrolidines (5)

To α -methoxy carbamates 4 (1.579 g, 8.35 mmol) at -40°C under argon was added a solution of SnCl₄ in dry CH₂Cl₂ (5% V/V, 5.86 ml, 2.5 mmol) and Me₃SiCN (2.23 ml, 16.7 mmol) under stirring. The reaction was monitored by TLC (Et₂O). After 20 min., a solution of aqueous Na₂CO₃ (10%, 10 ml) and then

water (5 ml) were added to the reaction mixture before extraction with CH_2Cl_2 . The crude product obtained by usual workup was purified by flash column chromatography on silica gel (P = 2 bars, CH_2Cl_2 -MeOH 98:2) to afford the diastereomers 5a (0.49g, 32%) and 5b (0.88 g, 57%) as oils.

(2R,5S) N-methoxycarbonyl-2-cyano-5-hydroxymethylpyrrolidine (5a) (less polar)

 $[\alpha]_D$ = +54° (c = 0.93). IR : 3415, 2950, 2220 (very weak), 1689, 1443. ¹H NMR (250 MHz): 4.65 (m, 1H, C-2-H), 3.99 (m, 1H, C-5-H), 3.80 (s, CO_2CH_3), 3.74 (m, C-6-H₂), 2.4-1.8 (m, C-3-H₂ and C-4-H₂). ¹³C NMR : 155.1 (CO), 118.7 (CN), 63.6 (CH₂O), 60.6-59.5 (C-5), 52.9 (OCH₃), 48.0 (C-2), 29.5 and 26.9 (C-3 and C-4). MS (m/z) : 184 (M⁺·), 153, 109, 82, 68 (100%). HRMS calcd for $C_8H_{12}N_2O_3$: 184.0848; obsd: 184.0829 ; $C_7H_9N_2O_2$: 153.0664; obsd: 153.0630 ; C_4H_6N : 68.0500 ; obsd: 68.0484.

(2S,5S) N-methoxycarbonyl-2-cyano-5-hydroxymethylpyrrolidine (5b) (more polar)

 $[\alpha]_D = -129^\circ$ (c = 1.2). Anal. Calcd for $C_8H_{12}N_2O_3$: C, 52.16; H, 6.57; N, 15.21. Found: C, 51.81; H, 6.39; N, 15.28. IR: 3428, 2964, 2233 (very weak), 1702, 1443. ¹H NMR (250 MHz): 4.57 (d, 1H, J = 6.5, C-2-H), 4.09 and 3.96 (2m, 1H, C-5-H), 3.80 (s, 3H, CO_2CH_3), 3.66 (m, 2H, C-6-H₂), 3.15 (ex. with D_2O , OH), 2.33, 2.20 and 2.00 (C-3-H₂ and C-4-H₂). ¹³C NMR: 154.9 (CO), 118.7 (CN), 63.7 (CH₂O), 59.7-58.7 (C-5), 53.1 (OCH₃), 48.2 (C-2), 29.7-28.9 and 27.7-26.9 (C-3 and C-4). MS (m/z): 184 (M^{4*}, weak), 153 (100%), 109, 82, 68 (100%).

(2S,5S) N-methoxycarbonyl-2-cyanopyrrolidine-5-carboxylic acid (6) and dicarboxylic acid (1)

The compound 5b (0.355 g, 1.9 mmol) in acetone (8 ml) was oxidized by Jones reagent (3.4 ml) at 0°C. The mixture was stirred for 50 min. at 0°C before the addition of isopropanol (20 ml) and water (20 ml). The crude product was extracted with ethyl acetate. The carboxylic acid 6 was isolated by extraction with KOH 0.1N followed by acidification of the aqueous layers with HCl and extraction with ethyl acetate (oil, 0.297 g, 78%).

 $\left[\alpha\right]_{D} = -114^{\circ} \ (c = 0.95). \quad IR: 3700-2400, 2960, 1722, 1450, 1376. \quad ^{1}H \ NMR \ (250 \ MHz): 5.8$ (OH), 4.70 and 4.50 (2m, C-2-H and C-5-H), 3.82 and 3.75 (CO $_{2}$ CH $_{3}$), 2.30 (m, C-3-H $_{2}$ and C-4-H $_{2}$). $^{13}C \ NMR: 175.2 \ (CO<math>_{2}$ H), 154.3 (NCO), 118.1 (CN), 53.6 (OCH $_{3}$), 58.8-58.5 (C-5), 48.0-47.5 (C-2), 29.8-29.6 and 28.6-28.3 (C-3 and C-4). MS (m/z): 198 (M $^{+}$ ·), 153 (100%), 139, 127, 109, 82, 68. HRMS: calcd for $C_{8}H_{10}N_{2}O_{4}$: 198.0640, obsd: 198.0633; $C_{7}H_{10}NO_{4}$: 172.0607, obsd: 172.0628; $C_{7}H_{9}N_{2}O_{2}$: 153.0664; obsd: 153.0656; $C_{6}H_{7}N_{2}O_{2}$: 139.0508; obsd: 139.0503.

A solution of the compound 6 (160 mg, 0.8 mmol) in HCl 6N (8 ml) was heated under reflux for 24 h to afford the diacid hydrochloride after evaporation to dryness. This product was treated with propylene oxide 11 and crystallized in EtOH to give the diacid 1 (112.7mg, 87%): F>280°C, $[\alpha]_D$ = -104° (c = 0,93, H₂O), [Litt.: $[\alpha]_D$ = -112° (c ~ 1, H₂O)², $[\alpha]_D$ = -102° (c = 0.983, H₂O)^{3f}].

Acknowledgment: We are grateful to UCIB (Usines Chimiques d'Ivry-la-Bataille) for a gift of (S) pyroglutamic acid.

REFERENCES AND NOTES

- 1. Preliminary communication: Seventh International Symposium on Marine Natural Products, Capri (Italy), July 5-10, 1992.
- 2. Impellizzeri, G.; Mangiafico, S.; Oriente, G.; Piattelli, M.; Sciuto, S.; Fattorusso, E.; Magno, S.; Santacroce, C.; Sica, D. *Phytochemistry* 1975, 14, 1549-1557.
- 3. a) Whitesell, J. Chem. Rev. 1989, 89, 1581-1590.
 - b) Kawanami, Y.; Ito, Y.; Kitagawa, T.; Taniguchi, Y.; Katsuki, T.; Yamaguchi, M. *Tetrahedron Lett.* 1984, 25, 857-860.
 - c) Uchikawa, M.; Hanamoto, T.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 4577-4580.
 - d) Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1987, 28, 651-654.
 - e) Kawanami, Y.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1987, 60, 4190-4192.
 - f) Takano, S.; Moriya, M.; Iwabuchi, Y.; Ogasawara, K. Tetrahedron Lett. 1989, 30, 3805-3806.
 - g) Ghosez, L.; Chen, L.Y. Tetrahedron Lett. 1990, 31, 4467-4470.
 - h) Yamamoto, Y.; Ohmori, H.; Sawada, S. Synlett. 1991, 319-320.
- 4. Ohta, T.; Hosoi, A.; Kimura, T.; Nozoe, S. Chemistry Lett. 1987, 2091-2094.
- 5. For more recent syntheses see: ref. 3f, Thanning, M.; Wistrand L.-G. Acta Chemica Scandinavica 1992, 46, 194-199, and Baldwin, J. E.; Hulme, C.; Schofield, J. J. Chem. Research (S) 1992, 173.
- 6. a) Andriamialisoa, R.; Langlois, N. Tetrahedron Lett. 1986, 27, 1149-1152.
 - b) Langlois, N.; Andriamialisoa, R. Tetrahedron Lett. 1988, 29, 3259-3262.
 - c) Langlois, N.; Favre, F. Tetrahedron Lett. 1991, 32, 2233-2236.
- 7. Saijo, S.; Wada, M.; Himizu, J.; Ishida, A. Chem. Pharm. Bull. 1980, 28, 1449-1458.
- 8. Winterfeldt, E. Synthesis 1975, 617-630.
- 9. Effenberger, F.; Müller, W.; Isak, H. Chem. Ber. 1987, 120, 45-54.
- 10. Rigo, B.; Lespagnol, C.; Pauly, M. J. Heterocyclic Chem., 1988, 25, 49-54.
- 11. Hardegger, E.; Ott, H. Helv. Chim. Acta 1955, 38, 312-320.
- 12. Corey, E.J.; Yuen, P.W.; Hannon, F.J.; Wierda, D.A. J. Org. Chem. 1990, 55, 784-786.
- 13. Shono, T.; Fujita T.; Matsumura, Y. Chemistry Lett. 1991, 81-84.
- 14. Thanning, M.; Wistrand, L.-G. Acta Chemica Scandinavica 1989, 43, 290-295.
- Hutchison, A.J.; Williams, M.; Angst. C.; de Jesus, R.; Blanchard, L.; Jackson, R.H.; Wilusz, E.J.;
 Murphy, D.E.; Bernard, P.S., Schneider, J.; Campbell, T.; Guida, W.; Sills, M.A. J. Med. Chem.
 1989, 32, 2171-2178.